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DEVELOPMENT OF VISCOSITY INSTABILITY IN A POROUS MEDIUM 

O. B. Bocharov and V. V. Kuznetsov UDC 532.546 

The interest in the problem of the stability of two-phase flows undergoing filtration 
is due mainly to the problem of maximizing the recovery of oil from underground when water 
or other agents which are immiscible with oil are pumped into the reservoir. When the ratio 
of the viscosities is large, the displacement of hydrocarbon liquids by water in a porous 
medium is essentially an unstable process. Instability of the displacement front leads to 
the formation of "tongues" of liquid which increase in size over time. The linear analysis 
of stability for piston-like displacement performed in[i] showed that the increase in the 
amplitude of the tongues is exponential in character, in [2], stability within the framework 
of a linear approximation was analyzed for the Musk~t-Leverett model with allowance for the 
erosion of the displacement front due to capillary forces. The growth of tongues after loss 
of stability was analyzed numerically without allowance for capillary forces in [3] for uni- 
form porous media and in [4] for microscopically nonuniform porousmedia. A detailed analy- 
sis of studies of viscosity instability in porous media was given in [5]. At the same time, there has 
been little study of the stage of nonlinear tongue growth with allowance for the two-phase char- 
acter of flow behind the displacement front. Here, within the framework of the Baclay-Lever- 
ett model, i.e., without allowance for capillary forces, we numerically study the structure 
of the flow region behind the displacement front in the unstable regime at the nonlinear 
stage of tongue growth. 

--Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No." 
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We will examine the motion of two immiscible incompressible fluids in a uniform hori- 
zontal bed. A two-dimensional formulation will be used. The system of equations for deter- 
mining the pressure and the saturation of the displacing phase s has the following form in 
dimensionless variables, with no allowance being made for the capillary pressure discontinuity 
between the phases and with the assumption of a linear filtration law [6] 

~/Ot + d i v  ( f ~ ) v )  = O, v ~ - - M ( s )  g r a d  p ,  d iv  v = O. ( 1 )  

Here and below, F(s) = kl(s)/[k1(s) + ~kf(s)] is the Baclay-Leverett function; M(s) = 
[k1(s)~ -I + kf(s)]/kf(O) is the total mobility of the phases with saturation s, referred 
to the initial mobility with s = O; k1(s) and kf(s) are the relative phase permeabilities; 

= ~I/~2 is the ratio of the viscosities of the fluids; v is the total filtration rate, 
made dimensionless with respect to the rate of filtration of the displacing fluid v 0 at x = 
O; p is pressure, made dimensionless with respect to P0 = v0~2%/kkf(O); t is time, made 
dimensionless with respect to t o = v0/m%; x and y are the space coordinates, made dimension- 
less with respect to the wavelength of the perturbation %; m is porosity; k is the absolute 
permeability of the porous medium; ~ is the length of the theoretical region; the subscripts 
1 and 2 denote the displacing fluid and the fluid being displaced, respectively. 

Flow is studied in the rectangular region x~ [0, a ], ye [0, 0.5] with impermeable boun- 
daries at y = O, y = 0.5, which models the symmetry of the flow. The study is conducted 
with a specified pressure p = 0 for x = a, a = ~/% and specified values of the rates of flow 
of the fluids for x = O. At the initial moment of time, the entire region is filled by the 
fluid being displaced (s = 0). 

For a difference approximation of the above-formulated boundary-value problem in the 
region being examined, we introduce a uniform block-centered grid with the step h x = hy = ho 
The solution is obtained by the IMPES method [7]. We used an explicit difference scheme 
of the Todd type [7] with arithmetic mean approximation of the function F(s) at half-integral 
points in the neighborhood of the front in order to obtain second-order accuracy in the region 
as a whole. The calculations were performed with a = 5, I0, and 20, which allowed us to 
study the asymptotic stage of development of the tongues. We used the method proposed in 
[3] to form the perturbations. The rate of flow of the displacing fluid at the inlet was 
assigned in the form of a function of time 

/ l  - -  ~z cos (2gy) ,  O~t~t ,~ 
~h,.~ (0, g, t ) =  l i ,  t ,  < t, 

~'2,~(0, y, t) = O, 0 ~ t, 

where ~ determines the amplitude of the perturbation of the displacement front at the moment 
of time t,. The distribution of saturation at the moment of time t~, being the numerical so- 
lution of system (i), was regarded as the initial condition for s(x~ y) at t = t .... The cal- 
culations were performed for relative phase permeabilities of the form kl(s) s ~, kf(s) = 
(i - s) 2 

Figure i shows the results of calculation of the saturation fields of the pumped fluid 
performed at a = i0, h = 0.i, and ~ = 0.i. The solid and dashed lines show forms of isolines 
of constant saturation of the displacing phase for different moments of time. The saturation 
isoline s c = 0,3 corresponds to the frontal saturation at ~ = 0.i in a unidimensional Baclay- 
Leverett problem and describes the form of the tongue of displacing fluid. The calculations 
showed that the maximum rate of growth of amplitude is seen for the isoline with saturation 
equal to the frontal saturation (Fig. 2). The amplitude of the isoline As, with saturation 
s, was calculated as half of the projection of the isoline on the horizontal axis x, conform- 
ing to the amplitude of the isoline A c with saturation s c. At the nonlinear stage of tongue 
growth, with A > 0.i, the rate of increase in the amplitudes of the isolines W s = dAs/ds 
is constant and does not depend on the amplitude of the tongue. Here, the isolines with 
s > s c are associated with a considerably lower growth rate. The constancy of the rate of 
growth of tongue amplitude in dimensionless variables indicates that, in dimensional vari- 
ables, it is independent of the wavelength of the perturbation %. 

Calculations performed for ~ = 0.167-0.0208 show that, regardless of the viscosity ratio, 
in the asymptotic stage of tongue growth the width of the tongues is equal to half the wave- 
length of the initial perturbation (see Fig. i). The same is true of tongues in a piston 
formulation, such as in the Hele-Show model [i]. However, in contrast to this model, in a 
porous medium the distortion of the isoline fiela~ is quite different for different s > s c. 
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It also follows from the calculations that for different moments of time (and tongue ampli- 
tudes), the saturation on the axi s of a tongue at the level of its rear part s is roughly 
constant and at ~ = 0.i is equal to 0.37. This pattern was also seen in calculations per- 
formed with other viscosity ratiQs, which shows that s is determined by the viscosity ratio 
of the fluids. 

Transverse pressure gradients in the region of a tongue can be ignored for large tongue 
amplitudes, since the width of the tongue is constant (see Fig. i). In accordance with the 
method in [I], this makes it possible to determine the rate of growth of a tongue with allow- 
ance forthe two-phase character of flow behind the displacement front. We will examine 
flow near the front part of the tongue in the section + and near its rear part in the section 
-. In these sections, saturation S = Q in zone a, while two-phase flow exists in zone b 
and the longitudinal components of total filtration velocity are determined as 

v$ = - M (0) Op+lax,, v~ = - -  3r (s~)~p+lOx; ( 2 )  

v_ = - M (0) ap. lOz,  ~5 = - -  ~ (s~) Op_lOx, 

where 3p+/3x and ap /3x a r e  the  p r e s s u r e  g rad ien t s ,  i n  t he  l o n g i t u d i n a l  d i r e c t i o n  near  t he  
front and rear parts of the tongue. Mere, we assume that s is the same for different mo- 
ments of time. Equations (2)~ lead to the following relation for the total filtration velo- 
cities in zones a and b: 

a b  
v ~ l v ~  = .M (O)IM (~), v_l~_ = M (O)IM (s_). ( 3 ) 

Equations (3) and the condition of constancy of the total rate of flow over the entire section 

v b~ ~v~ ~o ( l -  ~),~$ + ~ § = ( l , -  ~ ) ~  + = ( 4 )  

(i~being the fraction of the section occupied by the tonge) determine the filtration veloci- 
ties in regions a and b with allowance for the constancy of s c and s_ for different tongue 
amplitudes. 

In the absence of transverse flows, the rates of transport of frontal saturation in 
the leading and trailing parts of the tongue are foundl from the solution of the unidimension- 
al Baclay-Leverett problem [6]: 
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w +  (s~) = vSF' (s~)/m, W _  (s~) = ~iF' (so)lm. (5 )  

With allowance for (3)-(5), the rate of growth of tongue amplitude W c = [W+(s c) - W_(sc)]/2 
has the form 

Wc 2m [ ~Mz--~ (I -- 9) ~M_ ~ ( t ,  9) ( 6 ) 

[M e = M(s c) and M = M(s_)]. The value of s can also be found from Eqs. (2) and (3) by 
using the assumptTon of the absence of overfTows inside the tongue. In this case, the rate 
of transport of saturation s in zone b at the level of the trailing part of the tongue 
Wb(s ) = v bF'(s )/m, F'(s )-- (dF/ds)s=s_. The value of s will not change at different 
stag~s of tongue-growth under the condition Wb(s_) = W_(sc)? which leads to the following 
relation for s : 

F'(s_) = F'~c)[~M~ + (t - -  ~)]/[(t - -  ~) + ~M_]M~. (7)  

E q u a t i o n s  (6)  and (7)  g i v e  t h e  r a t e  o f  g rowth  o f  t o n g u e s  a t  A c > 0 . 1 .  As in  t h e  n u m e r i c a l  
c a l c u l a t i o n s ,  t h e  g rowth  r a t e  in  d i m e n s f o n a l  v a r i a b l e s  i s  i n d e p e n d e n t  o f  ~. 

F i g u r e  3 shows r e s u l t s  o f  n u m e r i c a l  c a l c u l a t i o n s  o f  t h e  r a t e  o f  g rowth  o f  t h e  a m p l i t u d e s  
o f  t o n g u e s  in  r e l a t i o n  t o  t h e  r a t i o  o f  t h e  m o b i l i t i e s  M c a t  t h e  d i s p l a c e m e n t  f r o n t  ( p o i n t s ) .  
Also  shown a r e  t h e  r e s u l t s  o f  c a l c u l a t i o n s  p e r f o r m e d  w i t h  Eqs.  (6 )  and (7)  a t  ~ = 0 .5  ( l i n e  
1) .  L ine  2 r e p r e s e n t s  t h e  r e s u l t s  o f  c a l c u l a t i o n s  w i t h  (6)  p e r f o r m e d  w i t h o u t  a l l o w a n c e  f o r  
t h e  change  in  s a t u r a t i o n  a l o n g  t h e  t o n g u e  ( s _  = Sc ) .  For  t he  s p e c i f i e d  form o f  r e l a t i v e  
phase  p e r m e a b i l i t i e s ,  t h e  v a l u e  o f  M c i s  d e t e r m i n e d  by t h e  r a t i o  o f  t h e  v i s c o s i t i e s  o f  t he  
f l u i d s .  The c a l c u l a t i o n s  w i t h  (6)  and (7)  s a t i s f a c t o r i l y  g e n e r a l i z e  t h e  d a t a  f rom numer i -  
c a l  c a l c u l a t i o n s  w i t h  t h e  c o m p l e t e  model t h r o u g h o u t  t h e  i n v e s t i g a t e d  r ange  o f  m o b i l i t y  r a t i o s  

M c �9 

For  s > So, t h e  r a t e  o f  g rowth  of  t h e  a m p l i t u d e s  o f  t h e  s a t u r a t i o n  i s o l i n e s  depends  
on s ( F i g .  4 ) .  Here ,  we p r e s e n t  r e s u l t s  o f  n u m e r i c a l  c a l c u l a t i o n s  o f  t he  r a t e  o f  g rowth  
o f  t h e  a m p l i t u d e s  o f  i s o l i n e s  w i t h  s a t u r a t i o n  s ,  r e f e r r e d  t o  t h e  r a t e  o f  g rowth  o f  t h e  a m p l i -  
t u d e  o f  t h e  t o n g u e s  Wc, as  a f u n c t i o n  o f  s a t ~  = 0 .125  and 0 .0417 ( l i n e s  1 and 2 ) .  Tongue 
g rowth  r e s u l t s  in  a r e d i s t r i b u t i o n  o f  t h e  r a t e  o f  f l ow of  t h e  d i s p l a c i n g  f l u i d  a c r o s s  t he  
section behind the displacement front, in accordance with (2)-(4). The presumption of the 
absence of transverse flows behind the front for isoiines with s > s c and the use of Eqs. 
(3) and (5) and expressions similar to (5) and (6) for the rate of shifting of the isoline 
s at y = 0 and y = 0.5 establish the rate of growth of isoline amplitude corresponding to 
the saturation s: 

W~ = W~F'(s)/F'(sc). (8) 

Figure 4 shows results of calculations with (8) for the viscosity ratio ~ = 0.125 and 
0.0417 (lines 1 and 2). Also shown are results from the complete model (points 3 and 4). 
The numerical results give lower values of growth rate than Eqs. (6)-(8), which is evidence 
of transverse flow behind the displacement front. Such flow decreases the nonuniformity 
of the rate of flow of the displacing fluid that forms the growing tongue. 

Thus, numerical calculations have shown that during the nonlinear stage of perturbation 
growth, the rate of increase in the amplitude of the tongues is constant and independent 
of the width of the tongues and is determined by the ratio of mobilities at the displacement 
front. Data were obtained on the rates of growth of isolines corresponding to different 
saturations of the displacing fluid for different viscosity ratios ~. An approximate rela- 
tion was proposed to determine the rate of growth of tongue amplitude. 
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DYNAMICS OF EXPLOSIVE LOADING FOR A FINITE VOLUME 

OF A DENSE TWO-PHASE MIXTURE 

I. G. Getts and V. K. Kedrinskii UDC 532.528+539.375 

This work is devoted to the problem of breakdown of a finite volume of liquid with ex- 
plosive loading concentrated at its center. It is often assumed [I] that this type of process 
in liquids is identical to phenomena occurring in solid bodies from the point of view of 
their final effect, i.e., formation of spalled layers close to the free surface with reflec- 
tion from it of a strong shock wave (SW). By analogy the concept is introduced of critical 
tensile stresses which are accommodated by the material and which when exceeded lead to for- 
mation, for example, in the case of plane shock waves, of plane separation surfaces. In [2], 
on the basis of analyzing work for studying critical stresses, it was shown that experimental 
data often differing by an order of magnitude may be explained by the nature of loading if 
a liquid which always contains microinhomogeneities in the form of free gas microbubbles 
is considered as a two-phase material and an appropriate mathematical model is applied to 
it. However, as noted in [3], this approach is inadequate in order to describe the break- 
down process. It is also shown there that behind a propagating rarefaction wave front there 
is intense development of bubble cavitation. This type of volumetric cavitation boiling 
embraces a significant part of the liquid, the medium becomes optically opaque, and, as can 
be seen from calculations, it retains hardly any tensile stresses which relax in a time of 
the order of i ~sec. Nonetheless, cases are possible when within the volume of a cavitating 
liquid conditions are created leading to occurrence of spalling phenomena [3]. The explicit 
cavitation (frothy) structure of these layers only underlines the indeterminate nature of 
the mechanism of their formation. 

The main features of the breakdown process for a finite volume of liquid with a free 
surface under explosive loading may he described as follows. Reflection of a strong SW from 
a free surface leads to formation of an unloading wave behind the front of which intense 
development of bubble cavitation is observed at nuclei whose role is played by microinhomo- 
geneities: their density is of the order of 10s-106 cm "~ [4], i.e., the process of damage 
initiation typical for brittle fracture dynamics [5, 6] is absent in a liquid in view of 
the features of its original structure. Unlimited development of cavitation bubbles leads 
to formation in the "boiling" liquid of a foam structure [7]. The latter, during inertial 
expansion, is finally transformed into a gas-droplet structure. Naturally, in each specific 
case, the duration of this or another stage of the breakdown process may be different and 
it depends markedly on loading dynamics. Nonetheless, on the basis of already known experi- 
mental and numerical studies (e.g., [2, 5, 8]) it is possible to note these typical times 
for the process: of the order of a microsecond for relaxation of tensile stresses, tens 
of microseconds for development of a cavitation zone (cavitation cluster), hundreds of micro- 
seconds for formation of a foam structure, and of the order of milliseconds for its breakdown 
into liquid fragments. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 120-125, March-April, 1989. Original article submitted July 15, 1988. 
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